

 ARL-TN-0865 ● JAN 2018

 US Army Research Laboratory

Extraction of Vertical Profiles of Atmospheric
Variables from Gridded Binary, Edition 2
(GRIB2) Model Output Files

by J L Cogan

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TN-0865 ● JAN 2018

 US Army Research Laboratory

Extraction of Vertical Profiles of Atmospheric
Variables from Gridded Binary, Edition 2
(GRIB2) Model Output Files

by J L Cogan
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

January 2018
2. REPORT TYPE

Technical Note
3. DATES COVERED (From - To)

30 October–30 November 2017
4. TITLE AND SUBTITLE

Extraction of Vertical Profiles of Atmospheric Variables from Gridded Binary,
Edition 2 (GRIB2) Model Output Files

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

J L Cogan
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CIE
2800 Powder Mill Road
Adelphi, MD 20783-1138

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TN-0865

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Vertical profiles of meteorological variables from model output data provide a means to ascertain the accuracy of the model
compared to sounding data from observation systems such as radiosondes, radar profilers, unmanned aerial vehicles, and other
atmospheric measurement systems. While various statistical packages provide a means to obtain upper air data from model
output, many are fairly restrictive in terms of vertical extent and resolution, and some are large and complex. The method
described here allows one to extract vertical profiles from Gridded Binary, edition 2 (GRIB2) model output at the inherent
vertical resolution with relatively modest effort without recourse to complex software packages. It employs software that is
readily available on many computer systems combined with relatively modest additional processing. Specifically, the method
described herein uses wgrib2 commands along with a Python script or program to produce tabular text files that in turn may be
processed using publicly available software on the US Army Research Laboratory GitHub site to generate “soundings” for
user-defined levels and layers.
15. SUBJECT TERMS

vertical profile extraction, meteorological model comparison, model accuracy, user-defined vertical profiles, vertical profile
analysis, Global Forecast System

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

24

19a. NAME OF RESPONSIBLE PERSON

James L Cogan
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(301) 394-2304
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.
iii

Contents

List of Tables iv

Acknowledgments v

1. Introduction 1

2. Extraction and Processing of Model-Generated Vertical Profiles 1

2.1 Create a Small Grid from the Input File 2

2.2 Extract the Vertical Profile Data 2

2.3 Convert the Output File into a User-Friendly Form 3

3. Convert Sounding to METCM or Other Layered Format 5

4. Summary and Conclusion 7

5. References 8

Appendix. Python process_wg2.py Code 9

List of Symbols, Abbreviations, and Acronyms 15

Distribution List 16

Approved for public release; distribution is unlimited.
iv

List of Tables

Table 1 Sample of output from “wgrib2 small_file.grb2 –v –s –lon 9.93 52.81
> ETGB_2017081506” (ETGB). Lines 61‒70 are shown out of 417
lines. .. 3

Table 2 A sample of the output from the Python script applied to the file
shown in Table 1. P is pressure, Hgt is height, Tmp is temperature, RH
is relative humidity, and U and V are the horizontal components of the
wind... 4

Table 3 Output with the same height structure as a METCM for the “sounding”
of Table 2. Other layered forms or height structures may be generated
by modifying the appropriate parameter file (e.g., usrmsg_lvls). In the
table, the listed heights are the upper boundaries of the layers (zones or
lines) except for line 0, which has values for the surface. The value -
999 indicates missing data. Virt temp is virtual temperature and
elevation is in meters. ... 6

Approved for public release; distribution is unlimited.
v

Acknowledgments

I would like to acknowledge Brian Reen for his initial Python script and assistance
with respect to the Python coding.

Approved for public release; distribution is unlimited.
vi

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.
1

1. Introduction

Vertical profiles of meteorological variables from model output data provide a
means to ascertain the accuracy of the output compared to sounding data from
observation systems such as radiosondes, radar profilers, unmanned aerial vehicles,
and other atmospheric measurement systems. While various statistical packages
provide a means to obtain upper air data from model output, many are fairly
restrictive in terms of vertical extent and resolution and generally are large and
complex. Examples include tools to process data from the National Oceanic and
Atmospheric Administration (NOAA) National Operational Model Archive and
Distribution System (NOMADS), which are available from NOAA sites such as
https://www.ncdc.noaa.gov/nomads/tools-services. Other evaluation software tools
are available at the Weather Research and Forecasting (WRF) Developmental Test
Center (DTC) at websites such as https://dtcenter.org/met/users/ and
https://dtcenter.org/upp/users/.

The method described here allows one to extract vertical profiles from Gridded
Binary, edition 2 (General Regularly-distributed Information in Binary form or
GRIB2) model output from the Global Forecast System (GFS) at the inherent
vertical resolution with relatively modest effort (for information on GRIB2 see
https://rda.ucar.edu/docs/formats/grib2/grib2doc/). It makes use of software that is
readily available and can be implemented on many computer systems combined
with relatively modest additional processing. Specifically, the method described
herein uses standard wgrib2 commands (for an overall description, see
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/) along with a Python
script or program to produce text files in an easy-to-understand tabular format.
These output files may be processed using publicly available software (ARL_MET-
profile_Converter) on the US Army Research Laboratory (ARL) GitHub site
(https://github.com/usarmyresearchlab) to generate “soundings” for user-defined
levels and layers.

2. Extraction and Processing of Model-Generated Vertical
Profiles

This section describes the procedure to extract vertical “soundings” from GRIB2
model output files and process them into ASCII text files. Also, it very briefly
outlines the process to generate vertical profiles of meteorological variables at user-
defined levels and layers. To date, a few dozen GFS output files have been
processed using wgrib2.

Approved for public release; distribution is unlimited.
2

2.1 Create a Small Grid from the Input File

The first step is to create a very small GRIB2 (.grb2) file from the larger global or
regional GRIB2 file. As used here, wgrib2 with –new_grid will generate a smaller
grid interpolated from the fields of the parent grid (http://www.cpc.ncep.noaa.gov/
products/wesley/wgrib2/new_grid.html). The horizontal grid points of the smaller
(new) grid are interpolated using bilinear interpolation of the larger grid data, unless
otherwise specified (e.g., change to nearest neighbor). The command line to create
the smaller file is as follows with uppercase denoting generic names such as for
input or output files (e.g., OUTPUT_FILE).

Thus,

wgrib2 INPUT_GRIB2 –set_grib_type same –new_grid_winds earth –
new_grid latlon LON:X DIRECTION POINTS:DX(LON) LAT:Y
DIRECTION POINTS:DY(LAT) SMALLER_GRIB2,

where INPUT_GRIB2 is the input GRIB2 file, SMALLER_GRIB2 is the smaller
output GRIB2 file, LON and LAT are the user-entered longitude and latitude in
decimal degrees, X and Y DIRECTION POINTS refer to the number of grid points
in the x- and y-directions, and DX and DY refer to the distance between grid points
in the respective directions in units of longitude and latitude.

In the command line, “same” for –set-grib_type results in another grb2 file and
“earth” for –new_grid_winds leads to winds relative to the Earth versus to the grid
or undefined. “latlon” for –new_grid results in a new grid interpolated from the
parent (old) grid, where the listed latitude and longitude are those for the new grid’s
lower-left corner. Information on these and many other arguments used for wgrib2
may be found via http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/
long_cmd_list.html. An example for a location near the US East Coast is

wgrib2 gfs_4_20170404_000_012.grb2 –set_grib_type same –
new_grid_winds earth –new_grid latlon -76.12:2:0.0001 39.10:2:0.0001
small_file.grb2

In this example, the file small_file.grb2 has a 2-by-2 horizontal grid 0.0001° apart,
which translates to about a 10-m separation.

2.2 Extract the Vertical Profile Data

The second step is to extract a sounding from the small grb2 file. That process is
accomplished using another wgrib2 procedure:

wgrib2 SMALLER_GRIB2 –v –s –lon LON LAN,

Approved for public release; distribution is unlimited.
3

where SMALLER_GRIB2 is the output from the procedure of Section 2.1, ‒v refers
to verbose output (includes the data values), ‒s refers to simple inventory (listing
of the output variables and parameters), and ‒lon produces data for the nearest grid
point to the stated longitude and latitude. With a grid separation of approximately
10 m, the values are essentially at the stated coordinates. This wgrib2 process
produces a list of the variables, data values, and other information for the output
grid point and prints it on the screen. To save the output, redirect the data to a
separate file.

Using the above example,

wgrib2 small_file.grb2 –v –s –lon -76.41 39.10 >SiteA_profile.

2.3 Convert the Output File into a User-Friendly Form

The output from the wgrib2 process of Section 2.2 is very wordy and not readily
useable for additional processing, such as to create a vertical profile in a format
similar to a computer meteorological message (METCM). Herein METCM refers
to tabular output with the same height and layer (aka zone) structure as the standard
METCM described in US Army FM 3-09.15 (2007). Table 1 shows a sample of
output for Bergen, Germany (ETGB), from the second wgrib2 procedure. The
nominal start time of the model was at 00 coordinated universal time (UTC) on 15
August 2017 and the data shown were from the 6-h forecast (i.e., for 0600 the same
day).

Table 1 Sample of output from “wgrib2 small_file.grb2 –v –s –lon 9.93 52.81 >
ETGB_2017081506” (ETGB). Lines 61‒70 are shown out of 417 lines.

61:12600:d=2017081500:VGRD V-Component of Wind [m/s]:50 mb:6 hour
fcst::lon=9.930000,lat=52.810000,i=1,ix=1,iy=1,val=3.89432
62:12810:d=2017081500:ABSV Absolute Vorticity [1/s]:50 mb:6 hour
fcst::lon=9.930000,lat=52.810000,i=1,ix=1,iy=1,val=0.000109774
63:13020:d=2017081500:O3MR Ozone Mixing Ratio [kg/kg]:50 mb:6 hour
fcst::lon=9.930000,lat=52.810000,i=1,ix=1,iy=1,val=3.67529e-06
64:13230:d=2017081500:HGT Geopotential Height [gpm]:70 mb:6 hour
fcst::lon=9.930000,lat=52.810000,i=1,ix=1,iy=1,val=18817.7
65:13440:d=2017081500:TMP Temperature [K]:70 mb:6 hour
fcst::lon=9.930000,lat=52.810000,i=1,ix=1,iy=1,val=219.231
66:13650:d=2017081500:RH Relative Humidity [%]:70 mb:6 hour
fcst::lon=9.930000,lat=52.810000,i=1,ix=1,iy=1,val=4.97867
67:13860:d=2017081500:UGRD U-Component of Wind [m/s]:70 mb:6 hour
fcst::lon=9.930000,lat=52.810000,i=1,ix=1,iy=1,val=4.55109
68:14070:d=2017081500:VGRD V-Component of Wind [m/s]:70 mb:6 hour
fcst::lon=9.930000,lat=52.810000,i=1,ix=1,iy=1,val=6.59625
69:14280:d=2017081500:ABSV Absolute Vorticity [1/s]:70 mb:6 hour
fcst::lon=9.930000,lat=52.810000,i=1,ix=1,iy=1,val=0.000108671
70:14490:d=2017081500:O3MR Ozone Mixing Ratio [kg/kg]:70 mb:6 hour
fcst::lon=9.930000,lat=52.810000,i=1,ix=1,iy=1,val=2.05373e-06

Approved for public release; distribution is unlimited.
4

A Python 3 program (often called a Python 3 script) was written to convert the
output into a readily readable and useable form. It reads in the aforementioned
output file from wgrib2 (ETGB_2017081506, in the example), extracts appropriate
information, and lists the extracted information in a readable tabular form. The
Python script used here is described in the Appendix.

To run the script, type

python3 process_wg2.py INPUT_FILE

For the input file that included the data in Table 1, use the following:

python3 process_wg2.py ETGB_2017081506

which produces the output file ETGB_2017081506_out.

GFS output files from NOAA starting on 12 UTC 11 May 2016 extend up to
1.0 hPa as in Table 2, but before then the last data line ended at 10 hPa. The
aforementioned methods work for both.

Table 2 A sample of the output from the Python script applied to the file shown in Table
1. P is pressure, Hgt is height, Tmp is temperature, RH is relative humidity, and U and V are
the horizontal components of the wind.

6-h forecast after model start at: 2017081500
Latitude: 52.810000 Longitude: 9.930000

P (hPa) Hgt (m) Tmp (K) RH (%) U (m/s) V (m/s)
1009.8 61.5 291.68 70.2 ‒2.77 2.09
1000.0 145.2 291.43 65.6 ‒4.79 4.38
975.0 362.0 291.19 61.3 ‒4.21 8.61
950.0 585.0 292.04 58.2 0.37 9.11
925.0 813.9 291.23 61.8 2.36 7.05
900.0 1048.2 289.96 65.7 2.30 6.17
850.0 1532.9 286.24 78.0 1.28 7.47
800.0 2039.5 282.00 83.7 0.44 9.11
750.0 2570.1 277.64 77.0 0.38 9.06
700.0 3128.8 274.77 50.6 4.77 6.19
650.0 3723.7 273.13 15.7 7.82 3.89
600.0 4359.9 269.44 14.9 8.19 3.55
550.0 5040.7 264.97 18.3 8.70 4.83
500.0 5773.0 259.82 23.9 8.94 6.46
450.0 6564.8 253.35 58.9 9.53 8.05
400.0 7426.9 246.73 94.8 10.45 8.23
350.0 8378.0 239.70 98.6 11.04 7.78
300.0 9440.3 230.95 98.5 12.09 8.78
250.0 10645.5 220.83 99.8 13.01 9.66
225.6 11302.4 216.77 50.0 15.84 8.85
200.0 12068.1 218.63 26.5 17.69 11.15
165.4 13300.0 222.40 50.0 17.50 16.18
150.0 13933.3 221.10 1.9 16.13 15.94
100.0 16529.6 218.50 2.7 9.90 10.46
70.0 18817.7 219.23 5.0 4.55 6.60
50.0 20977.7 220.07 2.6 1.01 3.89

Approved for public release; distribution is unlimited.
5

Table 2 A sample of the output from the Python script applied to the file shown in Table 1
(continued)

P (hPa) Hgt (m) Tmp (K) RH (%) U (m/s) V (m/s)
30.0 24279.5 222.30 0.5 ‒2.38 1.77
20.0 26945.0 226.65 0.3 ‒4.19 1.70
10.0 31608.0 233.32 0.1 ‒6.48 ‒0.12
7.0 34064.4 237.30 0.0 ‒8.76 0.40
5.0 36423.1 241.92 0.0 ‒9.96 0.67
3.0 40106.3 250.72 0.0 ‒12.85 1.57
2.0 43117.8 256.42 0.0 ‒5.68 3.00
1.0 48361.6 259.42 0.0 ‒22.37 4.14

3. Convert Sounding to METCM or Other Layered Format

The ARL_MET-profile_Converter programs (https://github.com/usarmyresearch
lab) or similar ones may be used to produce a table of user-defined levels or layers
from the table of “sounding” data (e.g., Table 2). Cogan (2017a, 2017b) and
included references that describe this C program and its application present samples
of output. One version produces output for height levels and layers, and a second
provides output for pressure levels and layers. The user provides a text file that
contains the height or pressure levels, respectively, which also serve as the vertical
boundaries of the included layers. The comparisons involving conversion of GFS-
derived soundings into a METCM used only a version for height levels and layers,
which is briefly discussed in the rest of this section.

The input and output directories are defined in the input_parameters file, which is
in the same directory as the C program executable. For a METCM, the file
metcm_lvls contains the boundary levels of the METCM layers (zones) starting
with the surface through 30 km. It is also in the same directory as the C program.
Note that zone 0 (the first data line) has values for the surface only. Consecutive
zones have weighted mean layer values. Sensible temperature was included in
addition to the standard METCM variables, as seen in Table 3. The program is run
using the following command line:

./convertgfs INPUT_FILE

For the example in this report, the line would read

./convertgfs ETGB_2017081506_out

Note that some operating systems may not use the “./” before the executable name.
Table 3 contains values of the listed variables for the height layers of a METCM
for the sounding of Table 2 (ETGB). Wind direction is in tens of mils and 6400
mils = 360° = 640 tens of mils.

Approved for public release; distribution is unlimited.
6

Table 3 Output with the same height structure as a METCM for the “sounding” of Table
2. Other layered forms or height structures may be generated by modifying the appropriate
parameter file (e.g., usrmsg_lvls). In the table, the listed heights are the upper boundaries of
the layers (zones or lines) except for line 0, which has values for the surface. The value -999
indicates missing data. Virt temp is virtual temperature and elevation is in meters.

METCM output

Date: 20150505 Time: 6 Latitude: 52.81000 Longitude: 9.93000
Elevation: 68.3 Ceiling: -999 Visibility: -999

Line Height
(m)

Wind direction
(tens of mils)

Wind speed
(kt)

Virt temp
(K*10)

Pressure
(mb)

Temperature
(K*10)

0 0 297 17 2920 991 2902
1 200 305 23 2915 980 2898
2 500 329 33 2906 951 2890
3 1000 380 39 2912 908 2898
4 1500 398 33 2882 856 2868
5 2000 389 29 2839 806 2828
6 2500 391 31 2803 759 2793
7 3000 406 36 2771 713 2763
8 3500 413 43 2739 671 2733
9 4000 415 47 2707 630 2702

10 4500 415 49 2675 591 2671
11 5000 414 50 2643 554 2639
12 6000 412 49 2591 502 2588
13 7000 408 47 2520 440 2518
14 8000 408 47 2445 383 2444
15 9000 422 55 2368 332 2368
16 10000 437 73 2293 287 2293
17 11000 439 81 2224 247 2224
18 12000 435 67 2170 211 2170
19 13000 433 55 2156 180 2156
20 14000 431 44 2161 154 2161
21 15000 431 36 2162 131 2162
22 16000 432 29 2161 112 2161
23 17000 430 22 2158 96 2158
24 18000 421 18 2150 82 2150
25 19000 410 13 2142 70 2142
26 20000 413 8 2140 59 2140
27 22000 402 3 2141 47 2141
28 24000 273 5 2154 34 2154
29 26000 240 12 2180 25 2180
30 28000 225 18 2218 18 2218
31 30000 205 22 2265 13 2265

Approved for public release; distribution is unlimited.
7

4. Summary and Conclusion

This brief report presents a method to extract vertical profiles of meteorological
variables from GRIB2 GFS output files and convert them into a standard type of
format. Further processing described in detail in Cogan (2017a, 2017b) and the
included references may be used to convert these “soundings” into profiles of user-
defined level and layer height or pressure values.

The wgrib2 program is available from NOAA and can be installed on many
computers. The Python program was written on a Linux computer with Python 3.5.
The C program produces profiles for user-defined height or pressure levels and
layers, and earlier versions have been used in several model evaluations.

The method described here provides a means to prepare GFS output for comparison
to data from observation systems or other models. An early attempt suggests that
wgrib2 may be suitable for GRIB2 output from other models (e.g., the Global Air
Land Weather Exploitation Model), but would require changes to the argument lists
and the variable table, and/or need one or more additional wgrib2 functions.

Approved for public release; distribution is unlimited.
8

5. References

Cogan J. Evaluation of model-generated vertical profiles of meteorological
variables: method and initial results. Meteorol Appl. 2017a;24:219–229.

Cogan J. Model evaluation using ballistic trajectories and preliminary mesoscale
model accuracies with age of global model initialization data. Meteorol Appl.
2017b. doi:10.1002/met.1684.

US Army FM 3-09.15/Marine Corps MCWP 3-16.5. Artillery meteorology.
Washington (DC): Headquarters, Department of the Army; 2007.

Some relevant web (URL) sites include the following:

• ARL GitHub site: https://github.com/usarmyresearchlab.

• An overall description of wgrib2 may be found at
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/. Information on
arguments used for wgrib2 may be found at http://www.cpc.ncep.noaa.gov/
products/wesley/wgrib2/long_cmd_list.html.

• NOMADS tools and services may be obtained at
https://www.ncdc.noaa.gov/nomads/tools-services. Additional evaluation
software tools are available at the WRF DTC via https://dtcenter.org/met/
users/, https://dtcenter.org/upp/users/ and their included links.

http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/

Approved for public release; distribution is unlimited.
9

Appendix. Python process_wg2.py Code

Approved for public release; distribution is unlimited.
10

This Appendix lists the Python process_wg2.py code as written for this application.
It represents one approach to extracting and reformatting data using Python.

#!/ bin/env python3

import re
import sys
from collections import defaultdict

#NOTE: sys.argv[0] is the program (e.g., process_data.py).

with open(sys.argv[1], "r") as f:
 input_data = f.readlines()

output_file = sys.argv[1] + "_out"
print('Reading from file: ', sys.argv[1])
pa_to_hPa = 0.01 # 1 hPa = 1 mb

p_val = defaultdict(dict)
other_val = defaultdict(dict)
pressvals=set()

for currentline in input_data:

 match = re.search(':surface', currentline)
 if match:
 match = re.search("PRES", currentline)
 if match:
 currentline_list = re.split('[=]', currentline)
 lon = currentline_list[2].replace(',lat','')
 lat = currentline_list[3].replace(',i','')
 if(float(lon) > 180):
 lon = str(float(lon) - 360)
 current_surfline = currentline_list[1]
 currentline_surf = re.split('[:]', current_surfline)
 model_start = currentline_surf[0] #Get the model start date and time.
 fcst_time = currentline_surf[3] #Get time of forecast from model start.
 if(fcst_time == 'anl'): #If = anl (analysis) then 0-h forecast.
 fcst_time = '0 hour'
 else:
 fcst_time = fcst_time.replace('fcst', '')
 current_surface = currentline_surf[2].replace(':','') #Remove : from surface value.
 current_surf_press = currentline_list[7] #Get the surface pressure value.
 surface_pressure = float(current_surf_press)*pa_to_hPa #Convert to float for hPa value.
 #print("surface_pressure ", surface_pressure)

 match = re.search(':HGT', currentline)
 if match:
 currentline_list = re.split('[=]', currentline)
 current_surf_hgt = currentline_list[7]
 other_val['HGT'][current_surface]=current_surf_hgt

Approved for public release; distribution is unlimited.
11

 match = re.search(':2 m above ground:', currentline)
 if match:
 currentline_list = re.split('[=]', currentline)

 match = re.search(':TMP', currentline)
 if match:
 current_surf_temp = currentline_list[7]
 other_val['TMP'][current_surface]=current_surf_temp # Actually 2 m AGL temperature.

 match = re.search(':RH', currentline)
 if match:
 current_surf_rh = currentline_list[7]
 other_val['RH'][current_surface]=current_surf_rh # Actually 2 m AGL relative humidity.

 match = re.search(':10 m above ground:', currentline)
 if match:
 currentline_list = re.split('[=]', currentline)

 match = re.search(':UGRD', currentline)
 if match:
 current_surf_u = currentline_list[7]
 other_val['UGRD'][current_surface]=current_surf_u # Actually 10m AGL U-component of
wind.

 match = re.search(':VGRD', currentline)
 if match:
 current_surf_v = currentline_list[7]
 other_val['VGRD'][current_surface]=current_surf_v # Actually 10 m AGL V-component of
wind.

 match = re.search(':tropopause', currentline)
 if match:
 currentline_list = re.split('[=]', currentline)
 current_trop_line = currentline_list[1]
 currentline_trop = re.split('[:]', current_trop_line)
 current_trop = currentline_trop[2]
 match = re.search(':HGT', currentline)
 if match:
 current_trop_hgt = currentline_list[7]
 other_val['HGT'][current_trop]=current_trop_hgt

 match = re.search('PRES', currentline)
 if match:
 current_trop_prs = currentline_list[7]
 other_val['PRES'][current_trop]=current_trop_prs
 tropo_pressure = float(current_trop_prs)*pa_to_hPa #Convert to float for hPa value.

 match = re.search('TMP', currentline)
 if match:
 current_trop_tmp = currentline_list[7]
 other_val['TMP'][current_trop]=current_trop_tmp

Approved for public release; distribution is unlimited.
12

 match = re.search('UGRD', currentline)
 if match:
 current_trop_u = currentline_list[7]
 other_val['UGRD'][current_trop]=current_trop_u

 match = re.search('VGRD', currentline)
 if match:
 current_trop_v = currentline_list[7]
 other_val['VGRD'][current_trop]=current_trop_v
 other_val['RH'][current_trop] = 50 # No RH data line for tropopause. Set at some value.

 match = re.search(':max wind', currentline)
 if match:
 currentline_list = re.split('[=]', currentline)
 current_maxwind_line = currentline_list[1]
 currentline_maxwind = re.split('[:]', current_maxwind_line)
 current_maxwind = currentline_maxwind[2]

 match = re.search(':HGT', currentline)
 if match:
 current_maxwind_hgt = currentline_list[7]
 other_val['HGT'][current_maxwind]=current_maxwind_hgt

 match = re.search(':PRES', currentline)
 if match:
 current_maxwind_prs = currentline_list[7]
 other_val['PRES'][current_maxwind]=current_maxwind_prs
 maxwind_pressure = float(current_maxwind_prs)*pa_to_hPa #Convert to float for hPa
value.

 match = re.search(':TMP', currentline)
 if match:
 current_maxwind_tmp = currentline_list[7]
 other_val['TMP'][current_maxwind]=current_maxwind_tmp

 match = re.search(':UGRD', currentline)
 if match:
 current_maxwind_u = currentline_list[7]
 other_val['UGRD'][current_maxwind]=current_maxwind_u

 match = re.search(':VGRD', currentline)
 if match:
 current_maxwind_v = currentline_list[7]
 other_val['VGRD'][current_maxwind]=current_maxwind_v
 other_val['RH'][current_maxwind] = 50 # No RH data line for tropopause. Set at some
value.

Begin "regular" data lines arranged by pressure levels.

 match = re.search('mb:', currentline)
 if match:
 currentline_list = re.split('[=]', currentline)
 current_pline = currentline_list[1]

Approved for public release; distribution is unlimited.
13

 currentline_prs = re.split('[:]', current_pline)
 current_press = currentline_prs[2].replace(' mb','') #Remove mb from pressure value.
 pressvals.add(float(current_press))

 match = re.search(':HGT', currentline)
 if match:
 currentline_hval = currentline_list[7]
 p_val['HGT'][str(int(current_press))]=currentline_hval

 match = re.search(':TMP', currentline)
 if match:
 currentline_tval = currentline_list[7]
 p_val['TMP'][str(int(current_press))]=currentline_tval

 match = re.search(':RH', currentline)
 if match:
 currentline_tval = currentline_list[7]
 p_val['RH'][str(int(current_press))]=currentline_tval

 match = re.search(':UGRD', currentline)
 if match:
 currentline_tval = currentline_list[7]
 p_val['UGRD'][str(int(current_press))]=currentline_tval

 match = re.search(':VGRD', currentline)
 if match:
 currentline_tval = currentline_list[7]
 p_val['VGRD'][str(int(current_press))]=currentline_tval

 sorted_pressvals=reversed(sorted(pressvals)) # Sort data levels in reverse order, that is,
highest to lowest.

#OUTPUT SECTION: output generated here although some output strings composed earlier in
program.

with open(output_file, "w") as fo:
 print('Writing to file: ', output_file)
 header_string='\n{0:9s}{1:25s}{2:12s}\n'.format(fcst_time,'forecast after model start at: ',
model_start)
 fo.write(header_string)
 header_string='{0:10s}{1:11s}{2:11s}{3:10s}\n\n'.format('Latitude: ', lat, 'Longitude: ', lon)
 fo.write(header_string)
 header_string='{0:9s}{1:9s}{2:10s}{3:8s}{4:8s}{5:8s}\n'.format(' P (hPa)', ' Hgt (m)', 'Tmp (K)', 'RH
(%)', 'U (m/s)', 'V (m/s)')
 fo.write(header_string)
 try:
 surface_string = '{0:7.1f}{1:9.1f} {2:7.2f} {3:7.1f} {4:7.2f}
{5:7.2f}\n'.format(float(surface_pressure), float(other_val['HGT'][current_surface]),
 float(other_val['TMP'][current_surface]), float(other_val['RH'][current_surface]),
 float(other_val['UGRD'][current_surface]), float(other_val['VGRD'][current_surface]))
 fo.write(surface_string)
 except KeyError:
 print("Surface data KeyError ", surface_pressure)

Approved for public release; distribution is unlimited.
14

 try:
 tropo_string = '{0:7.1f}{1:9.1f} {2:7.2f} {3:7.1f} {4:7.2f} {5:7.2f}\n'.format(float(tropo_pressure),
float(other_val['HGT'][current_trop]),
 float(other_val['TMP'][current_trop]), float(other_val['RH'][current_trop]),
 float(other_val['UGRD'][current_trop]), float(other_val['VGRD'][current_trop]))
 except KeyError:
 print("troposphere data KeyError ", tropo_pressure)

 try:
 maxwind_string = '{0:7.1f}{1:9.1f} {2:7.2f} {3:7.1f} {4:7.2f}
{5:7.2f}\n'.format(float(maxwind_pressure), float(other_val['HGT'][current_maxwind]),
 float(other_val['TMP'][current_maxwind]), float(other_val['RH'][current_maxwind]),
 float(other_val['UGRD'][current_maxwind]), float(other_val['VGRD'][current_maxwind]))
 except KeyError:
 print("Maximum wind data KeyError ", maxwind_pressure)

 last_pressure = 1999.0 # Initialize last_pressure with an improbable value as a start for the for
loop.

 for press_now in sorted_pressvals:
 if(press_now > surface_pressure):
 continue
 if((tropo_pressure > press_now and tropo_pressure < last_pressure) and (maxwind_pressure
> press_now and maxwind_pressure < last_pressure)):
 if(tropo_pressure > maxwind_pressure):
 fo.write(tropo_string)
 fo.write(maxwind_string)
 else:
 fo.write(maxwind_string)
 fo.write(tropo_string)
 elif(tropo_pressure > press_now and tropo_pressure < last_pressure):
 fo.write(tropo_string)
 elif(maxwind_pressure > press_now and maxwind_pressure < last_pressure):
 fo.write(maxwind_string)

 try:
 data_string = '{0:7.1f} {1:8.1f} {2:7.2f} {3:7.1f} {4:7.2f} {5:7.2f}\n'.format(int(press_now),
float(p_val['HGT'][str(int(press_now))]),
 float(p_val['TMP'][str(int(press_now))]), float(p_val['RH'][str(int(press_now))]),
 float(p_val['UGRD'][str(int(press_now))]), float(p_val['VGRD'][str(int(press_now))]))
 fo.write(data_string)
 last_pressure = press_now
 except KeyError:
 print("Key error for dictionary variable found at pressure level: ", str(int(press_now)))

Approved for public release; distribution is unlimited.
15

List of Symbols, Abbreviations, and Acronyms

ARL US Army Research Laboratory

DTC Developmental Test Center

ETGB Bergen, Germany

GFS Global Forecast System

GRIB2 Gridded Binary, edition 2

METCM computer meteorological message

NOAA National Oceanic and Atmospheric Administration

NOMADS National Operational Model Archive and Distribution
System

URL Uniform Resource Locator

UTC coordinated universal time

WRF Weather Research and Forecasting

Approved for public release; distribution is unlimited.
16

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIR ARL
 (PDF) IMAL HRA
 RECORDS MGMT
 RDRL DCL
 TECH LIB

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 1 ARL
 (PDF) RDRL CIE
 J COGAN

	List of Tables
	Acknowledgments
	1. Introduction
	2. Extraction and Processing of Model-Generated Vertical Profiles
	2.1 Create a Small Grid from the Input File
	2.2 Extract the Vertical Profile Data
	2.3 Convert the Output File into a User-Friendly Form

	3. Convert Sounding to METCM or Other Layered Format
	4. Summary and Conclusion
	5. References
	Appendix. Python process_wg2.py Code
	List of Symbols, Abbreviations, and Acronyms

